- How does Value Stream Analytics work?
- Feature availability
- VSA core domain objects
- Default stages
- Data Collector
- High-level overview
- Frontend
- Testing
- Development setup and testing
Value stream analytics development guide
For information on how to configure value stream analytics (VSA) in GitLab, see our analytics documentation.
How does Value Stream Analytics work?
Value Stream Analytics calculates the duration between two timestamp columns or timestamp expressions and runs various aggregations on the data.
For example:
- Duration between the Merge Request creation time and Merge Request merge time.
- Duration between the Issue creation time and Issue close time.
This duration is exposed in various ways:
- Aggregation: median, average
- Listing: list the duration for individual Merge Request and Issue records
Apart from the durations, we expose the record count within a stage.
Feature availability
- Group level (licensed): Requires Ultimate or Premium subscription. This version is the most feature-full.
- Project level (licensed): We are continually adding features to project level VSA to bring it in line with group level VSA.
- Project level (FOSS): Keep it as is.
Feature | Group level (licensed) | Project level (licensed) | Project level (FOSS) |
---|---|---|---|
Create custom value streams | Yes | No, only one value stream (default) is present with the default stages | no, only one value stream (default) is present with the default stages |
Create custom stages | Yes | No | No |
Filtering (author, label, milestone, etc.) | Yes | Yes | Yes |
Stage time chart | Yes | No | No |
Total time chart | Yes | No | No |
Task by type chart | Yes | No | No |
DORA Metrics | Yes | Yes | No |
Cycle time and lead time summary (Key metrics) | Yes | Yes | No |
New issues, commits and deploys (Key metrics) | Yes, excluding commits | Yes | Yes |
Uses aggregated backend | Yes | No | No |
Date filter behavior | Filters items finished within the date range | Filters items by creation date. | Filters items by creation date. |
Authorization | At least reporter | At least reporter | Can be public. |
VSA core domain objects
Stages
A stage represents an event pair (start and end events) with additional metadata, such as the name of the stage. Stages are configurable by the user within the pairing rules defined in the backend.
Example stage: Code Review
- Start event identifier: Merge request creation time.
- Start event column: uses the
merge_requests.created_at
timestamp column. - End event identifier: Merge request merge time.
- End event column: uses the
merge_request_metrics.merged_at
timestamp column. - Stage event hash ID: a calculated hash for the pair of start and end event identifiers.
- If two stages have the same configuration of start and end events, then their stage event hash. IDs are identical.
- The stage event hash ID is later used to store the aggregated data in partitioned database tables.
Historically, value stream analytics defined 7 stages which are always available to the end-users regardless of the subscription.
Value streams
Value streams are container objects for the stages. There can be multiple value streams per group focusing on different aspects of the DevOps lifecycle.
Events
Events are the smallest building blocks of the value stream analytics feature. A stage consists of two events:
- Start event
- End event
These events play a key role in the duration calculation.
Formula: duration = end_event_time - start_event_time
To make the duration calculation flexible, each Event
is implemented as a separate class.
They’re responsible for defining a timestamp expression that is used in the calculation query.
Implementing an Event
class
You must implement a few methods, as described in the StageEvent
base class.
The most important methods are:
object_type
timestamp_projection
The object_type
method defines which domain object is queried for the calculation. Currently two models are allowed:
Issue
MergeRequest
For the duration calculation the timestamp_projection
method is used.
def timestamp_projection
# your timestamp expression comes here
end
# event will use the issue creation time in the duration calculation
def timestamp_projection
Issue.arel_table[:created_at]
end
More complex expressions are also possible (for example, using COALESCE
).
Review the existing event classes for examples.
In some cases, defining the timestamp_projection
method is not enough. The calculation query should know which table contains the timestamp expression. Each Event
class is responsible for making modifications to the calculation query to make the timestamp_projection
work. This usually means joining an additional table.
Example for joining the issue_metrics
table and using the first_mentioned_in_commit_at
column as the timestamp expression:
def object_type
Issue
end
def timestamp_projection
IssueMetrics.arel_table[:first_mentioned_in_commit_at]
end
def apply_query_customization(query)
# in this case the query attribute will be based on the Issue model: `Issue.where(...)`
query.joins(:metrics)
end
Validating start and end events
Some start/end event pairs are not “compatible” with each other. For example:
- “Issue created” to “Merge Request created”: The event classes are defined on different domain models, the
object_type
method is different. - “Issue closed” to “Issue created”: Issue must be created first before it can be closed.
- “Issue closed” to “Issue closed”: Duration is always 0.
The StageEvents
module describes the allowed start_event
and end_event
pairings (PAIRING_RULES
constant). If a new event is added, it needs to be registered in this module.
To add a new event:
- Add an entry in
ENUM_MAPPING
with a unique number, which is used in theStage
model asenum
. - Define which events are compatible with the event in the
PAIRING_RULES
hash.
Supported start/end event pairings:
Default stages
The original implementation of value stream analytics defined 7 stages. These stages are always available for each parent, however altering these stages is not possible.
To make things efficient and reduce the number of records created, the default stages are expressed as in-memory objects (not persisted). When the user creates a custom stage for the first time, all the stages are persisted. This behavior is implemented in the value stream analytics service objects.
The reason for this was that we’d like to add the abilities to hide and order stages later on.
Data Collector
DataCollector
is the central point where the data is queried from the database. The class always operates on a single stage and consists of the following components:
-
BaseQueryBuilder
:- Responsible for composing the initial query.
- Deals with
Stage
specific configuration: events and their query customizations. - Parameters coming from the UI: date ranges.
-
Median
: Calculates the median duration for a stage using the query fromBaseQueryBuilder
. -
RecordsFetcher
: Loads relevant records for a stage using the query fromBaseQueryBuilder
and specificFinder
classes to apply visibility rules. -
DataForDurationChart
: Loads calculated durations with the finish time (end event timestamp) for the scatterplot chart.
For a new calculation or a query, implement it as a new method call in the DataCollector
class.
To support the aggregated value stream analytics backend, these classes were reimplemented within Aggregated
namespace.
Database query backend
VSA supports two backends: aggregated and “live”. The live query backend can be considered legacy, which will be phased out at some point.
- “live”: uses the standard
IssuableFinders
. - aggregated: queries data from pre-aggregated database tables.
High-level overview
- Rails Controller (
Analytics::CycleAnalytics
module): Value stream analytics exposes its data via JSON endpoints, implemented within theanalytics
workspace. Configuring the stages are also implements JSON endpoints (CRUD). - Services (
Analytics::CycleAnalytics
module): AllStage
related actions are delegated to respective service objects. - Models (
Analytics::CycleAnalytics
module): Models are used to persist theStage
objectsProjectStage
andStage
. - Feature classes (
Gitlab::Analytics::CycleAnalytics
module):- Responsible for composing queries and define feature specific business logic.
-
DataCollector
,Event
,StageEvents
, etc.
Frontend
Project VSA is available for all users and:
- Includes a mixture of key and DORA metrics based on the tier.
- Uses the set of default stages.
Group VSA is only available for licensed users and extends project VSA to include:
- An overview stage.
- The ability to create custom value streams.
The group and project level VSA frontends are both built with Vue and Vuex and follow a similar pattern:
- The
index.js
file extracts any URL query parameters, creates the Vue app and Vuex store, and dispatches aninitialize
Vuex action. - The
base.vue
file is used to render the main components for each page, metrics, filters, charts, and the stage table.
The group VSA Vuex store makes use of Vuex modules to separate some of the state and logic used for rendering the charts.
Shared components
Parts of the UI are shared between project VSA and group VSA such as the stage table and path. These shared components live in the project VSA directory app/assets/javascripts/cycle_analytics/components
and are included at the group level VSA where needed.
All the frontend code for group-level features are located in ee/app/assets/javascripts/analytics/cycle_analytics/components
.
Testing
Since we have a lots of events and possible pairings, testing each pairing is not possible. The rule is to have at least one test case using an Event
class.
Writing a test case for a stage using a new Event
can be challenging since data must be created for both events. To make this a bit simpler, each test case must be implemented in the data_collector_spec.rb
where the stage is tested through the DataCollector
. Each test case is turned into multiple tests, covering the following cases:
- Different parents:
Group
orProject
- Different calculations:
Median
,RecordsFetcher
orDataForDurationChart
The VSA frontend is tested extensively on two different levels (integration, unit):
- End-to-end integration tests using a real backend via Capybara and RSpec.
- Jest frontend tests with pre-generated data fixtures.
Development setup and testing
Running Value Stream Analytics can be done via the GDK. By default, you’ll be able to view the project-level (FOSS) version of the feature.
If your GDK is up and running, you can run the seed script to generate some data:
SEED_CYCLE_ANALYTICS=true SEED_VSA=true FILTER=cycle_analytics rake db:seed_fu
The data generator script creates a new group and a new project with issue and merge request data (see the output of the script). To view the group-level version of the feature, you need to request a license for your GDK instance.
After this step, you can access the group level value stream analytics page where you can create
value streams and stages. The data aggregation might be delayed so you might not see the
data right after the stage creation. To speed up this process, you can run the following command
in your rails console (rails c
):
Analytics::CycleAnalytics::ReaggregationWorker.new.perform
Seed data
Value stream analytics
Seed issues and merge requests for value stream analytics:
// Seed 10 issues for the project specified by <project-id>
$ VSA_SEED_PROJECT_ID=<project-id> VSA_ISSUE_COUNT=10 SEED_VSA=true FILTER=cycle_analytics rake db:seed_fu
DORA metrics
Seed DORA daily metrics for value stream, insights and CI/CD analytics:
-
Create an environment from the UI named
production
. -
Open the rails console:
rails c